\qquad
2-1 The Language of Functions
Date \qquad \#1

Goal: Give definitions, properties and representations of functions

Notes

Warm Up: Determine whether the relation is a function in 1-2.
Explain. Then list the domain and range.
1.

2.

x	y
1	-2
-1	2
-2	4
1	3

Vocabulary

relation:
independent variable:
dependent variable:

What is a Function?

A function is a \qquad (x, y) in which each first component (x) is paired with \qquad second component (y).

$$
\begin{gathered}
\text { Example } \\
f=\{(1,2),(2,4),(3,7)\}
\end{gathered}
$$

Non-example
$g=\{(1,2),(2,4),(1,7)\}$
domain:
range:

Descriptions of Functions

Three ways to describe/represent functions are:
1.
2.
3.

Example 3: A rule for the function graphed at the right is $y=2^{x}-4$.
Find the domain and range of the function.

Example 4: Find the domain and range of the function with the rule $y=3(x-5)^{2}-1$.

Testing for Functions: Use the vertical line test to determine which are functions to the right.
13.

15.

14.

16.

Questions	Naming Functions \& Their Values Functions can be named with letters, such as f or g. The symbol $f(x)$ is read " \qquad ". Example 5: Suppose f is defined by the rule $f(x)=4 \cdot\left(\frac{1}{2}\right)^{x}$ for all real numbers x. a. Evaluate $f(5)$ b. Does $f(-2+3)=f(-2)+f(3)$?
	c. Evaluate $f(n+1)$.
	Example 6: Suppose g is defined by the rule $g(x)=2 x^{2}-3 x-2$ for all real numbers x. a. Evaluate $g(-2)$ b. Does $g(-2+3)=g(-2)+g(3)$?
	c. Evaluate $g(2 n-1)$.

